วันพฤหัสบดีที่ 29 มกราคม พ.ศ. 2558

ฟังก์ชันกำลังสอง

กราฟของฟังก์ชันกำลังสอง

           ฟังก์ชันกำลังสอง  คือ  ฟังก์ชันที่เมื่อ  a,b,c  เป็นจำนวนจริงใดๆ และ ลักษณะของกราฟของฟังก์ชันนี้ขึ้นอยู่กับค่าของ  a , b  และ  และเมื่อค่าของ  เป็นบวกหรือลบ    อ่านเพิ่มเติม

ฟังก์ชันเชิงเส้น

ฟังก์ชันเชิงเส้น   คือ ฟังก์ชันที่อยู่ในรูป y = ax+b เมื่อ a ,b เป็นจำนวนจริง และ กราฟของฟังก์ชันเชิงเส้นจะเป็นเส้นตรง

ระบบจำนวนจริง

เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ  ได้แก่
- เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย  I

                   I = {1,2,3…}       อ่านเพิ่มเติม

การให้เหตุผลแบบนิรนัย

            การให้เหตุผลแบบนิรนัยเป็นการนำความรู้พื้นฐานซึ่งอาจเป็นความเชื่อ ข้อตกลง กฎ หรือบทนิยาม ซึ่งเป็นสิ่งที่รู้มาก่อน และยอมรับว่าเป็นความจริงเพื่อหาเหตุผลนำไปสู่ข้อสรุป เป็นการอ้างเหตุผลที่มีข้อสรุปตามเนื้อหาสาระที่อยู่ภายในขอบเขตของข้ออ้างที่กำหนด     อ่านเพิ่มเติม

การให้เหตุผลแบบอุปนัย

การให้เหตุผลแบบอุปนัย เป็นวิธีการสรุปผลมาจากการค้นหาความจริงจากการสังเกตหรือการทดลองหลายครั้งจากกรณีย่อยๆ แล้วนำมาสรุปเป็นความรู้แบบทั่วไป อ่านเพิ่มเติม

สับเซต และเพาเวอร์เซต

สับเซต
บทนิยาม เซต A เป็นสับเซตของเซต B ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A เป็นสมาชิกของเซต B และสามารถเขียนแทนได้ด้วยสัญลักษณ์ A อ่านเพิ่มเติม

ค่าสัมบูรณ์ของจำนวนจริง

                ค่าสัมบูรณ์ของจำนวนจริง a ใดๆ เขียนแทนด้วย |a| หมายถึง ระยะทางจากจุด 0 จนถึงจุด บนเส้นจำนวน ตัวอย่างเช่น   อ่านเพิ่มเติม

เซต

 (Sets) หมายถึง กลุ่มสิ่งของต่างๆ ไม่ว่าจะเป็น คน สัตว์ สิ่งของหรือนิพจน์ทางคณิตศาสตร์ ซึ่งสามารถระบุสมาชิกในกลุ่มได้ และเรียกสมาชิกในกลุ่มว่า "สมาชิกของเซต"    อ่านเพิ่มเติม


ฟังก์ชันกำลังสอง

คือ  ฟังก์ชันที่อยู่ในรูป  เมื่อ  a,b,c  เป็นจำนวนจริงใดๆ  และ ลักษณะของกราฟของฟังก์ชันนี้ขึ้นอยู่กับค่าของ  a , b  และ  และเมื่อค่าของ  เป็นบวกหรือลบ  จะทำให้ได้กราฟเป็นเส้นโค้งหงายหรือคว่ำ  อ่านเพิ่มเติม


ฟังก์ชันค่าสมบูรณ์

          ค่า absolute ของ x ให้ระยะห่างระหว่าง x และ 0 เป็นบวกหรือศูนย์เสมอ ตัวอย่างเช่น
|3| = 3, |-3| = 3, |0|=0. | 3 | = 3, | -3 | = 3 | 0 | = 0
โดเมนของฟังก์ชันค่าสมบูรณ์คือ R ทั้งเส้นของจริงในขณะที่ช่วงคือช่วง [0, ∞)

 ฟังก์ชันค่าสมบูรณ์สามารถอธิบายกฎ อ่านเพิ่มเติม


ฟังก์ชันขั้นบันได

          คือฟังก์ชันบนจำนวนจริงซึ่งเกิดจากการรวมกันระหว่างฟังก์ชันคงตัวจากโดเมนที่แบ่งออกเป็นช่วงหลายช่วง กราฟของฟังก์ชันจะมีลักษณะเป็นส่วนของเส้นตรงหรือรังสีในแนวราบเป็นท่อน ๆ ตามช่วง ในระดับความสูงต่างกัน อ่านเพิ่มเติม